Main course information		
Academic subject	Functional analysis of the genome	
Degree course	Cellular and Molecular Biology	
Degree class	LM/6	
ECTS credits (CFU)	3	
Compulsory attendance	Yes	
Teaching language	Italian	
Accademic Year	2019/2020	

Professor/Lecturer	
Name & SURNAME	Mariateresa Volpicella
email	mariateresa.volpicella@uniba.it
Tel.	080-5443311
Tutorial time/day	by appointment to be requested by mail

Course details	Pass-fail exam/Exam with mark out of 30	SSD code	Type of class
Course details	Exam with mark out of 30	BIO/II	Lecture/laboratory

Teaching schedule	Year	Semester	
reacting selection	I	II	

Lesson type	CFU/ECTS	Lessons (hours)	CFU/ECTS	Lab hours	CFU/ECTS tutorial/workshop	Tutorial/workshop hours	CFU/ECTS field trip	Field trip Hours
	2	16	I	12				

Time	Total hours	Teaching hours	Self-study hours
management	90	28	62

Academic	First lesson	Final lesson
Calendar	March	June

Syllabus		
Course entry requirements	Knowledge of molecular biology, biochemistry, genetics and basic molecular biology	
Course end y requirements	techniques	
Expected learning outcomes (according to Dublin Descriptors) (it is recommended that they are congruent with the		
learning outcomes contained in	A4a, A4b, A4c tables of the SUA-CdS)	
Knowledge and understanding	Acquisition of advanced knowledge of modern molecular biology techniques for nucleic	
Knowledge and anderstanding	acid analysis and recombinant protein expression	
Applying knowledge and	Application of broad-spectrum methodologies related to the biomolecular research	
understanding	field.	
Making informed judgements	Acquisition of autonomy in areas related to evaluation, and interpretation of	
and choices experimental and theoretical data		
	Acquisition of the appropriate vocabulary and terminology for the description of the	
	methodological and instrumental approaches used for the functional analysis of the	
Communicating knowledge and	genome and of recombinant proteins, and of their use in the biotechnological field. The	
understanding	achievement of an adequate level of communication skills will be assessed during the	
	lessons, exercises and during the final exam.	
	Acquisition of the ability to investigate, update and read with a critical spirit the	
Capacities to continue learning	evolution of the discipline, through the consultation of texts, databases and other	
-	information on the net.	

Sylabus

	Functional genomics and gene function: general aspects.
	Vectors for the expression of recombinant proteins in bacteria, yeasts and mammals
	Site-specific and random mutagenesis
	Phage display and functional screening
Course content	Genome walking for the identification of gene regions
	Microbiome and transcriptome analysis by NGS techniques
	Laboratory experiences:
	Expression of the Green Fluorescent Protein in transformed bacteria and
	chromatographic purification of the protein
	Transformation of Pichia pastoris yeast cells
Course books/Bibliography	F. Amaldi et al. BIOLOGIA MOLECOLARE 3a edizione - Ed. Zanichelli.
Course books/bibliography	T.A. Brown- Genomi 3- EdiSES; Biotecnologie molecolari-Zanichelli
Notes	The study must be integrated with the lecture notes; the PowerPoint of the lessons will also be available as support.
Teaching methods	Frontal lessons with the use of power point and practical experiences in the laboratory.
Assessment methods (indicate	
at least the type written, oral, other)	Oral exam
Evaluation criteria (Explain for	
each expected learning	In addition to ascertaining the acquisition of concepts, it will be evaluate the capacity
outcome what a student has to	of respond to the reasons and make connections with a critical and punctual spirit
know, or is able to do, and how	of the topics within the same discipline and in relation to other disciplines
many levels of achievement	related, such as biochemistry and genetics.
there are	
Further information	